ಕರ್ನಾಟಕದ ಪಿ.ಯೂ.ಸಿ ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ಈ ಅಂತರ್ಜಾಲ ಪುಟಕ್ಕೆ ಸುಸ್ವಾಗತ..

ನಾವೆಲ್ಲರೂ ಒಂದೇ .....

ಗಡಿಯಾಚೆ, ಗಿಡದಾಚೆ......ಹೋಗೋಣ ಬನ್ನಿರೋ ವಿದ್ಯಾಲಯಕೆ...

ಪರೀಕ್ಷಾ ಸಿದ್ದತೆಗೆ ಅಂತಿಮ ಸ್ಪರ್ಶ...

ಪರೀಕ್ಷೆಗೆ ನಾವೂ ರೆಡಿ ...!

ಪರೀಕ್ಷಾ ರೂಂ ಯಾವುದು? ನನ್ನ ರಿಗಿಸ್ತೆರ್ ನಂಬರ್ ಯಾವುದು? ಒಟ್ಟಿನಲ್ಲಿ ಹುಡುಕಾಟ ......

ಲಾಸ್ಟ್ ಓವರ್ ಪ್ರಾರಂಭ !

Dear Students,

This is a website is created  to help the students of Ist AND IInd year PUC [Science] of Karnataka state. We provide you model question papers of all the four optional subjects ie., PCMB, some very important questions and   some question papers with model answers too. In the future, we will provide some model question papers of Karnataka CET too. This  website is designed and maintained by  lecturers of Pre University colleges.

You are welcome to comment on the content of the website. We request you to discuss any issues  related  to Physics, Chemistry, Maths and Biology. We hope that you will utilize this website and become successful in IInd year PUC examination.

ಪ್ರಿಯ ವಿದ್ಯಾರ್ಥಿಗಳೇ,
ಕರ್ನಾಟಕದಲ್ಲಿ ವಿಜ್ಞಾನ ಸಂಯೋಜನೆಯಲ್ಲಿ ಅಭ್ಯಸಿಸುತ್ತಿರುವ ಪಿ.ಯೂ.ಸಿ ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ಶೈಕ್ಷಣಿಕವಾಗಿ ಸಹಾಯವಾಗಲೆಂದು ಈ ಬ್ಲಾಗ್ ಅನ್ನು ರೂಪಿಸಿದ್ದೇವೆ. ಇದರಲ್ಲಿ ಮಾದರಿ ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಗಳು, ಪ್ರಶ್ನೆಕೋಶಗಳು, ಬಹು ಮುಖ್ಯಪ್ರಶ್ನೆಗಳ ಭಂಡಾರ, ಇತ್ಯಾದಿಗಳನ್ನು ಅಪ್ ಲೋಡ್ ಮಾಡಿದ್ದೇವೆ. ಬರುವ ದಿನಗಳಲ್ಲಿ ಸಿ.ಈ.ಟಿ ಪರೀಕ್ಷೆಗೆ ಸಂಬಂಧಿಸಿದಂತೆ ಮಾದರಿ ಪ್ರಶ್ನೆಗಳನ್ನು ಅಪ್ ಲೋಡ್ ಮಾಡುತ್ತೇವೆ. ಇವುಗಳನ್ನು ನೀವು ಉಚಿತವಾಗಿ ಡೌನ್ ಲೋಡ್ ಮಾಡಿಕೊಳ್ಳಬಹುದು. ನಿಮಗೆ ಏನಾದರೂ ಶೈಕ್ಷಣಿಕ ಸಹಾಯ ಬೇಕಿದ್ದಲ್ಲಿ, ಈ-ಮೈಲ್ ಮೂಲಕ ನಮ್ಮನ್ನು ಸಂಪರ್ಕಿಸಬಹುದು.
ನಿಮ್ಮೊಡನೆ ನಾವಿದ್ದೇವೆ. ನಿಮಗೆ ಶುಭವಾಗಲಿ.

ಕಟ್ಟುವೆವು ನಾವು ಹೊಸ ನಾಡೊಂದನು, ರಸದ
ಬೀಡೊಂದನು
ಹೊಸ ನೆತ್ತರುಕ್ಕುಕ್ಕಿ ಆರಿಹೋಗುವ ಮುನ್ನ,
ಹರಿಯದೀ ಮಾಂತ್ರಿಕನ ಮಾಟ ಮಸುಳುವ ಮುನ್ನ,
ಉತ್ಸಾಹ ಸಾಹಸದ ಉತ್ತುಂಗ ವೀಚಿಗಳ
ಈ ಕ್ಷುಬ್ಧ ಸಾಗರವು ಬತ್ತಿಹೋಗುವ ಮುನ್ನ
ಕಟ್ಟುವೆವು ನಾವು ಹೊಸ ನಾಡೊಂದನು, ರಸದ
ಬೀಡೊಂದನು..
ಗೋಪಾಲಕೃಷ್ಣ ಅಡಿಗರು

“YOU CAN DOWNLOAD ALL THE MATERIAL FREELY FROM THIS WEBSITE”

“ಈ ಅಂತರ್ಜಾಲ ಪುಟದಲ್ಲಿರುವ ಫೈಲುಗಳನ್ನು ಉಚಿತವಾಗಿ DOWNLOAD ಮಾಡಿಕೊಳ್ಳಬಹುದು”.

wishing you all the best in your efforts,

Aravind Kumar.K, Lecturer in Biology, Govt.  PU College, Anaveri, Bhadravathi.

aravindbiology@gmail.com

Ravishankar. N, Lecturer in Chemistry, Govt PU College, Sagar

ravialchemy@gmail.com

Vasudev. K .H, Lecturer in Mathematics, Govt PU College, Sagar

vasudeva.kh@gmail.com

Ganachari.G.M, Lecturer in Mathematics, GPU College, Chikkamagalur.

NOTE: IN THIS SITE ,  DOCUMENTS ARE IN PDF FORM.

FOR VIEWING  ADOBE PDF READER OR  PDF READER or ACROBAT READER IS  REQUIRED.

ALL THE BEST!

All the best!

All the best!

2nd PUC biology-questions from practical part, diagrams list, “differences between…”

download from the link:

LIST OF IMPORTANT DIAGRAMS, Practical questions etc.,

Suggest name for a new website

Dear Friends,

We want to start a new website for helping all students studying pre university course. Please suggest a attractive name for our new website.

The best suggestion will be rewarded!

regards

aravind

CET 2011-MATHEMATICS SOLVED PAPER

DEAR STUDENTS

HERE IS   CET 2011 MATHEMATICS  PAPER  COMPLETELY SOLVED .

THIS WAS GIVEN BY OUR CONTRIBUTOR

SUCHINDRA D,  LECTURER IN MATHEMATICS,VIDYABHARATHI IND PU COLLEGE, SHIMOGA &

VASUDEVA KH, LECTURER IN MATHEMATCS, SAGAR

all are scanned copies and in jpeg format, HERE IS THE LINK

All the best.

ಪಿಯುಸಿಪಿಸಿಎಂಬಿ ತಂಡವು ಕನ್ನಡನಾಡಿನ ಎಲ್ಲಾ ದ್ವಿತೀಯ ಪಿಯುಸಿ ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ಪರೀಕ್ಷೆಯಲ್ಲಿ ಶುಭವಾಗಲೆಂದು ಹೃದಯಪೂರ್ವಕವಾಗಿ ಹಾರೈಸುತ್ತದೆ.

2nd PUC MODEL QUESTION PAPER-2- CHEMISTRY-2011

Dear Students,

Please find herewith a model question paper in Chemistry. This is presented to you by Sri.Ravi shankar, N, Lecturer in Chemistry.

Link:

II PUC CHEMISTRY-MODEL QUESTION PAPER-2011(1)

Wishes,

from pucpcmb team.

MODEL QUESTION PAPER-II P. U. C . CHEMISTRY-2011

Dear Students,

Here is a model question paper in Chemistry. This is contributed by Sri Ravishankar,N, Lecturer in Chemistry.

link-

2nd PUC QUESTION-Question paper-2-Chemistry-2011

wishes

pucpcmb team

II PUC MODEL PAPERS (4 AND 5) IN MATHEMATICS

Dear students

These model papers  were  contributed by

Shri RP Bhadrashetty, Lecturer in Mathematics

SUJM PU college, Harapanahalli

and

KHV

HERE IS THE DOWNLOAD LINK:

II PUC MATHEMATICS MODEL PAPER -4

II PUC MODEL PAPER-MATHEMATICS -5

TIPS FOR EXAM: MATH DISCUSSION-GROUPS

THIS WAS CONTRIBUTED BY:

Shri Ganachari M, Lecturer in Mathematics. GPUC,CHKM

Question: Show that G = {0,1,2,3} is an abelian group under addition mod 4 .

Explanation: First you have to construct the composition table. Here it is.


The correct table and closure law carries one mark. Sometimes wrong table carries zero mark. So it is necessary to construct the correct table.

 

While showing the given set forms an Abelian group under addition modulo 4, many students will commit mistakes.

Here is clarification:

CLOSURE LAW:

Some students are showing the Closure law like   therefore closure law satisfied.But it is not enough. You have to verify for all the elements of given set G. Now how to verify this?  This can be verified by composition table and you have to write like this

All the entries in the table are in G hence closure law satisfied.

Associative law:

Again some students fail to get marks in this. Some time if you write this

therefore associative law satisfied. But it wrong

you must write like….

For all a, b and c in G, a+(b+c) and (a+b)+c leave the same remainder when divided by 4, therefore

. Hence associative law satisfied.

Existence of Identity element: You may write: clearly 0 is the identity element in G. It’s OK. But for more accuracy it is essential to write as…

The row headed by 0 is same as the top most row, hence 0 is the identity element.

Existence of inverse element : If you write this “ Every row has the identity element, hence every element

has its inverse in G. Inverse law satisfied.” With this it is better to write the inverse of 0, 1, 2, 3 are 0, 3, 2, 1 respectively.

In verifying Inverse law, It is must to write the inverses of all the given elements seperately

Commutative law : Many will write like  . Hence commutative law is satisfied.

It is not sufficient to declare commutative law satisfied. What can you say about other elements? So it is better write like this…

A Following single line is enough to declare commutative law,

The table is symmetrical about the principal diagonal, hence commutative satisfies.

Hence G is an abelian group under addition mod 4.

0

1

2

3

0

0

1

2

3

1

1

2

3

0

2

2

3

0

1

3

3

0

1

2

MATHEMATICS-MODEL PAPER -3

This model paper in II PUC MATHEMATICS  was contributed by

Shri Ganachari M , Lecturer in Mathematics

Thanks to shri GM

ದ್ವಿತೀಯ ಪಿ.ಯು.ಸಿ,  ಗಣಿತಶಾಸ್ತ್ರದ ಈ ಮಾದರಿ ಪತ್ರಿಕೆ -೩  ನ್ನು  ನೀಡಿದವರು

ಶ್ರೀ ಗಣಾಚಾರಿ ಎಂ. ಗಣಿತಶಾಸ್ತ್ರ ಉಪನ್ಯಾಸಕರು.

ಇವರಿಗೆ ವಂದನೆಗಳು

Here is the link/ಇಲ್ಲಿದೆ ಲಿಂಕ್:

MATHEMATICS-II PUC-HOT MODEL PAPER – 3

Follow

Get every new post delivered to your Inbox.

Join 361 other followers